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If we have shown that for 1nf < jal, Vhu for sufficiently small h have their L
(N2- IaI +1)-norms uniformly bounded in h and since the same is true for Vh¶/i
and Vh c#I, we may apply relation (3) to v = Vhau and conclude that IIVhaUjI(N - IaI iX)
is uniformly bounded in h for all sufficiently small h. But as h -O- 0, Vhau con-
verges in the distribution sense to (b/lx)au. If we consider the sequence V2-nhU
in L2(N2-1Ja,), then, by the uniform boundedness of the norms, we can find a
subsequence converging weakly to an element of L2(N2- aI) which must equal
(6/bx)au in that neighborhood. Since all the distribution derivatives of u are lo-
cally in L2, our conclusion follows from a well-known theorem of Sobolev.6
Remark 2: By a refinement of the argument, we can remove the restriction that

u E L2(G) and prove regularity for any distribution solution. Similarly, bounds
may be obtained for the L2-norms of u and its derivatives on a compact G1 in terms
of L2-norms of 4,t and its derivatives and any negative Dirichlet norm of u on any
G2 containing 6, in its interior.

1 For a survey of recent results in the elliptic case cf. F. E. Browder, Conzmuns. Pure and Appl.
Math., 9, 351-361, 1956; L. Nirenberg, Communs. Pure and Appl. Math., 9, 509-529, 1956. For
the parabolic case see F. E. Browder, these PROCEEDINGS, 42, 914, 1956.

2 L. HMrmander, Acta math., 94, 161-248, 1955.
3 The first result of this type was stated by Hormander.
4 F. E. Browder, these PROCEEDINGS, 42, 769-771, 1956.
5 Hrmander, op. cit., pp. 222-229.
6 Cf. L. Schwartz, Thgorie des distributions (Paris, 1951), 2, 47, Theorem XIX.
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Post' has questioned the existence of a recursively enumerable set of non-negative
integers which is neither recursive nor of the highest degree of unsolvability possible
to recursively enumerable sets. This question is now answered by the construction
of two recursively enumerable sets of which we prove that neither is recursive in
the other and hence that they both satisfy the criteria of Post's question. In the
theorem we shall deal not with the sets directly but with their representing functions
(functions taking the values 0 and 1, respectively, for members and nonmembers
of the sets).2
THEOREM I. There exist two functions fi and f2, both of which represent recursively

enumerable sets and neither of which is recursive in the other.
We shall define fi and f2 by successive approximation through a pair of sequences

of functions ff0, ftl, f'2, ... and f20, f21, f22, ... For each pair of numbers a, e
we shall define a number xla(e) for which we intend to set fla/(xia(e)) = 0 if at some
later stage a' (.a) of the construction we encounter a y for which

Tlt2f(e, xia(e), y) & U(y) = 1,
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and otherwise to leave fia'(xla(e)) unchanged as a' increases. Once relation (1)
is established, we shall act so as to insure as nearly as possible that it will remain
true for all higher a', and hence also with f2 in place of f2a'-1. Similarly for X2a(e),
with fia and f2a interchanged.
The functions fia(x), f2a(x), xia(e), and xia(e) shall be recursive as two-argument

functions. We define them as follows.
Case 0: a = 0. Let

fl'(x) = f20(X) = 1, all x;

x, I(e) = x20(e) = 2e, all e.

Case 1: a = 2b + 1. Let ea be the number of prime divisors of b (so that for
any fixed e we have ea = e for infinitely many a). Two subcases are possible.

Subcase 1.1: fia-1(xjal(ea)) = 1 and (Ey <a) [Tlf2a'(ea, Xla-,(ea), y) & U(y) = 1].
Then let

.fla(Xla- '(ea)) = 0;

xva(e) = 2e (2a + 1), all e ae;

and otherwise let

Af = P1aX f2a= f2a- a = XIa-1 X2a = X2ai1

Subcase 1.2: Otherwise. Then let

Aa = fi a-, f2a = f2a-1 XIa = Xia-1i X2a = X2a-1

Case 2: a = 2b + 2. Treat as Case 1 with subscripts 1 and 2 interchanged
and with "e > ea" in line 4 of Subcase 1.1 replaced by "e > ea" in Subease 1.2.

This completes the definition of the auxiliary functions. Now let fi(x) = 0 or
1 according as (Ea) (fia(x) = 0) or not, and similarly for f2. Clearly, fi and f2
represent recursively enumerable sets.
Note that the only information about a function f relevant to the statement

Tif(e, x, y) is information about its values on arguments u < y (because all the
relevant arguments occur in a formal expression with Godel number y). There-
fore, the changes made in X2a under Subcase 1.1 prevent the falsification of Tlf2a (ea,
xia(ea), y) for any a' > a except through an occurrence of Subcase 2.1 with ea' < ea.
The success of the construction depends upon two lemmas.
LEMMA I. For any given e, Xia(e) changes only a finite number of times as a in-

creases through the natural numbers.
Because there are only finitely many e < e, the lemma can fail for e = e only if,

for some fixed e' < e, Subease 2.1 occurs an infinite number of times with ea = e'.
Since each such occurrence changes f2a(x2a(e')) from 1 to 0, this in turn requires
infinitely many changes of X2a(jl). But this, by similar reasoning, requires in-
finitely many changes of Xa(e) for some fixed e G e' < e. Therefore, e is not the
smallest number for which the lemma fails. Thus the lemma is proved by induc-
tion.
LEMMA II. Let z1(e) be the last (unchanged) value assumed by Xia(e) as a increases.

Then (Ey) [T1f2(e, zi(e), y) & U(y) = 1]-f (z1(e)) = 0.
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For if Tlf2(e, z1(e), y) & U(y) = 1 for some y, then (since, for sufficiently high
a, f2a(U) = f2(u), all u < y) fia(z,(e)) will eventually be made equal to zero through
an occurrence of Subease 1.1.

Conversely, if fi(zi(e)) = 0, Subcase 1.1 must have arisen for some a for which

xIa(e) = zi(e) and (Ey) [T1f2a-(e, z1(e), y) & U(y) = 1]. No occurrence of Sub-
case 2.1 with ea < e can subsequently falsify this latter statement, for such an
occurrence would induce a change in xia(e), contrary to the definition of z1 (e).
Therefore, the statement remains true with f2 in place of f2a- .
Lemmas I and II hold for any e and as well with f' and f2 interchanged. There-

fore, neither fi nor f2 is recursive in the other.4
THEOREM II. Given a set A, there exist two sets not recursive in one another, both

enumerable by a procedure recursive in A and both of degree higher than that of A.
Proof: Change Case 0 in Theorem I to make fiO(2e) = f2O(2e) = 0 instead of 1

whenever e belongs to A, and to make x10(e) = x20(e) = 3 2e for all e. Then fi
and f2 represent the desired sets.

I Emil L. Post, "Recursively Enumerable Sets of Positive Integers and Their Decision Prob-
lems," Bull. Am. Math. Soc., 50, 284-316, 1944.

2 S. C. Kleene and Emil L. Post ("The Upper Semi-lattice of Degrees of Recursive Unsolva-
bility," Ann. Math., 59, 379-407, 1954) produce two functions neither of which is recursive in
the other. The present paper adapts their method to the restriction that both functions represent
recursively enumerable sets. The gist of this adaptation was presented by title at the February
25, 1956, meeting of the American Mathematical Society and has been abstracted (R. Friedberg,
Bull. Am. Math. Soc., 62, 260, 1956, Abstr. 362).

3 U is a recursive function, and Tf is a predicate which is recursive if f is, such that Tif (e, x, y)
means that e is the G6del number of a formal procedure for calculating one function, given another;
that y is the Godel number of a formal application of this procedure with! as the given function;
and that this application yields the value U(y) for the calculated function on the argument x.
(See S. C. Kleene, Introduction to Metamathematics [New York: D. Van Nostrand Co., 1952],
pp. 276-278 and 288-291.) Hence f cannot be recursive in f2 if for each e there is an x such that

fi(x) # 1 (Ey)[Tf2(e, x, y) & U(y) = 1].
4The nonconstructiveness of Lemma I, which demonstrates that zi is defined for all arguments

without telling us how to calculate it, is a necessary feature of the construction. For if z1 were
recursive, fi would represent a creative set and would therefore, by a theorem of J. R. Myhill
("Creative Sets," Z. math. Logik u. Grundlagen Math., 1, 97-108, 1955), be of the highest degree
possible to recursively enumerable sets.
A full exposition of this theorem is to appear in two forthcoming texts: H. Rogers, Theory of

Recursive Functions and Effective Computability (mimeo), MIT Math. Dept., Cambridge, 1957;
and J. C. E. Dekker and J. R. Myhill, Recursion Theory.
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